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Istamting the Parameters of a Truncated Gwna Distribution V

Douglas G. Chapman

University of Washington

1. 8mew-Y A table is given to simplify the estimation of the parameters

of an incomplete Vina or Type III distribution. A now procedure is

also suggested to estimate the parameters of a truncated gams distri.

bution. This method is also applicable to a umber of other trumcated

distributions, vhether the truncation is in the tails or the center of

the distribution.

2. . Several examples have been given recently, employing the

inoomplete, pinoa or Type Mf distribution in fitting rainfall data,

e.g. [1,2]. In an animal population study [31, it vas found that the

migration pattern could be fitted by this type of distribution. Fr.

quently in such migration studi s the data will be truncated, I.e.

observations will begin after migration has begun or oaclude before it

has stopped.

The parameters of the gems distribution are often estimated by

the method of moments in such cases [see for example [J.] pp. 121, 125]

despite the fact that Fisher [5i shoved the method to be inefficient.

To facilitate solution of the maimm likelihood equations for estis.-

tion of the parameters in the untrmuoated case, a simple table is given.

The estimation of the parameters of a truncated gams distribution,

by the method of mmentso has been studied by Cohen [61 since the

"(~Reesrah sponsored by the Office of Baval Research.



2

integral of the probability density cannot be expressed in closed form,

even the moent estimates are tedious to obtainj no attempt has been

made to evaluate their variances or study their efficiencies. After

this paper was completed, a now study of the problem was published by

Des Raj [131. He gives the maximum likelihood equations for a number

of oases of truncated and censored samples, mainly however under the

assumption that the third standard mment is known. These equations

can be solved only by iterative methods. In this paper a now method of

estimation of these parameters is introduced which is easier to apply.

The asymptotic variance-covariance matrix of the estimates is determined.

3. Es!tat£ a km. The density function of the gnma dis-

tribution may be written in the form

f~z) b 0 (X-Go() b-1

- 0 x a

The parameters are frequently transformed so that the distribution is

expressed as a function of the mean, variance and skewnes. Since the

cn ample quantities do not efficiently estimate the pare-

meters such a transfomtion appears to be misleading.

The mextmm likelihood equations have been given by Fishe J, via.

as. a

(2) _a= na- (b
bP (b) 1-1

(3) b-1
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Since the parameter c determinee ths region of positive dentity,

that equation (3) gives the maximm lik3lihood et-timate of c musi be

justified in a slightly lifferent manner thar by routine celoulus. If

b > 1 this is easily done; if, however, b : 1 equation (3) does not

give the maximum likelihood of c. In this case f(x) is mohotone de-

creasing for x 3 c and a - min xi is the maximum likelihood estimate

of O.

We consider first the case where the origin is knowns so that c

may be sot equal to sero, without loss of generality and equation (3)

drops out. Letting

XL~

(1) and (2) yield

Sincm* -L) the digna functionhas been tabulated by Pairuan
['(b) '

[71, It Is easy to construct a table of ) (b) and solve for b b,

inverse interpolation. A m11 tabulation of yr (b) is given In Table I;

a more oasplete tabulation is available in mimeographed form fram +,he

Laboratory of Statistical Research, University of Vashington. Thaa-e

y (b) and its first and second differences are tabulated for b1l. (.01)5,

5(0.1)20j 20(1)100. The table was checked by sm-ing coluims in thv

basic tables and should be correct to one figure in the fifth deciml,

A Itim , - - a The den, Ay functice

is nmr written



z9.

(4) x7()- - b-1 ,- i - C

- 0 elsewhere

where K(a,b) - e-A x X 1 dx

The maximm likelihood functions now invlve derivatives of K with

respect to a and b respectively; a double entry table would be

necessary to obtain the maymum. likelihood estimates of a and b and

oven this would involve double inverse interpolation.

In lieu of this another method of estimation is proposed. Let

the n observation, be grouped by class.. (I - hi. 4 i* h-).

(i l,2,..,r) where 4 -1 hr hr " and denoteby V-

the number of observations falling in class i, ioe. between

4 i-hi and i-hi°

Define 1 4  h-

The form of equation (6) gests estimating a and b by a

least squares proedure, wi'th qi replacing p1 . This can be justified

as an appro[aate proedure by the following rsul~t. To terms of order
a

WII

* q

(6) in P )- P, 1 - 4 )1,'-) nfnhh

(I=12t.r- )t hedgeeo ppoiaio nictdb

Th frmofeqaton(6 sggst etiatnga ndb y
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2 I-
n P

p1  pin . p1

Ths roaUts can be obtane by expanding la(q L/pjL) -ln(' t -P

In a Taylor series (assuming that for large n, Pr(qo-O) and

Pr(q > 2P,) may be neglected). It is also necessur to use the fAct

that F (q=) sa resut easily obtainable tram ibe wll-kmw

recurrence formula for the central moment, of the mltincaml distribw.

tic., Vis.

From this, in fact, it may be inferred that

E(qfrl ) = r

Moreover, the limiting distribution of the In q is easily obtained

from the following lema.

SLet f.()(i l ,2,...#r) be a sequence of ran-dam variables

and /Ptiv Cri(I =12...,r) be constants such that the joint distribu-

tin of

T () (R -) - n(=12,,r

tends to the limiting distribution F(yipyro~opyr) as n-*e.*
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and let f(x) be of class c) in the neighborhood of ,PA,...,pr)

then zj) [xin) ) (A ffj 1 ,2,.,.,r)

have the same joint limiting distribution.

This is a consequence of the general theorems on stochastic limit

relationships proved by Mann and Wald [83 (cf. their Theorems 3 and 5-a

trivial modification is however required since our f(x) is a function

of a single real variable while their corresponding g(x) is a function

of a vector-valued random variable).

Finally# writing

(10) yi n n qi - In q i (i -l,2,...,r - )

it follown that the Yi are asymptotically multinormal with means

a( + (b-l) ink4it+ln hi

and moment matrix

/11i(' i) 01$ +.L~ 1 L 000 0
2 P2P P3 32

- - ( 6L ) 00 - 6P1 '3 P4

0 . . 0 . . .o. n l .. S S */

0 0 +

n Pr
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Asymptotically efficient estimators of a and b are found by

uinimnising the quadratic for

vhere the vector)

Since the true values of the P1 are not known, it is necessary

to replace the pi in Y by their estimates, the Ca4. Introducing

the notation

(11) w, ln h, - f ln hi 1

(12) U i 4ia 1 4

(13) vi= 1n In-]n

the equations for a and b are

(154) a T Mij~ ( tUJv'V b 2ia,a 0oi4J .V- j Uii/ j 0 1

Rm* denoting the elements of Tq (Y with p's replaced by qla)

The solutions of these are

(16) A l =l~ 1~ -)1

P 7tfuS au~svm l) - u 1
00

(17 b -€F/7 €'-' - '- /Io" - €U4 -u* I)

rus

where a.

and thoe ovariance matrix of ^b ') is



(v V)
(u 7Z v) (U 7-(u' U)

A A

The estimates a and b are found by direct sample routine

calculations except for the determnatiton of 7- fro 7 . This OWay

be a tedious process unless r is mall. However, if all pI are

equal to ,then

r-l. r-.2 r-3,. 3, 2, 3

r-2. 2(r-2). 2(r-3),. 6, 14, 2

r-3,, 2(r-3). 3(r-3),,.. 9, 69 3

2 1 * **0* 0 O * * * aO SO a

3,9 6 v 9, 3(r-3) 2(r-3),.r-3

2, a 4 , 6, 2(r-3). 2(r-2). r-2

1,t 2 , 3, (r-3). r-2 .r-1)

This is easily verified by direct mltiplication. This muggeste that

where possible the should be cos~oen so that the %1  (and thus ap-

proximateoly, the p I) are equal. The device is analogous to that sug-

gested by Gubel (9) and by Mann and Wald [10] in applying theX2

agoodness-of-f its test.

If this is not possible,, less efficient etimates am be obtained

by utilizing only the odd (or even) wits. The odd wits are mutually

Independent smong themselves and consequently M) and reduce to

diagonal natrice.

5. 1ANAM 31M AM= W,. If the parameter a. the origin, is un-

knmn, then the estimation problem is more difficUt whether or not the

S a w
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distribution is truncated. It,,rative methodo are of course poseiblt3 in

solving (1) (2) and (3) vith the aid of Table I, i.e., for the untruncated

case. In the truncated case this method is too tedics;s to have much

practical value.

If, in the truncated case, there is available supplementary informa-

tion so that the restriction 0 < c < . L1  may be utilized, then a

procedure similar to that outlined above may be followsc. In this case

lnp pii a 1= a(4i 4 1,2,. (b-1) in - *ln -

again to the degree of approximation indicated by (5). With the restrio-

tion noted above, it is adequate to write

(19) , In p- + , P a( i+-4)*b-l) in fA +(b-1) o c L -

h

Defining 7,v as above least squares estimates of a, b and o

may be found in an exactly analogous procedure to that of Section 4.

6. Gmeluoe. The method used to estimate the parameters a and b in

Section 4 may also be applied if the sample is drawn from a doubly

truncated gaa distribution, from a singly or doubly truncated normal

distribution or from a beta distribution with known range, either truncated

or not. Methods of obtaining the maximum likelihood estimates of the

parameters of a truncated normal distribution are, of course, well known,
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and extensive tabulations have been made to facilitate ";he determination

of such solutions (e.g., compare particularly Bald Fuj1).

The method outlined above would also be useful in estimating the

parameters of the normal curve where there are systematic gaps in the

observations. This may occur particularly in time distributions-an

example may be found in [12]. For distributions with finite but unknown

range, however, the method does not appear to be satisfactory.
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TAB3LE I

b f(b) A

1.0 .57722
.c58.6

1.1 .519o6
.04770

1.2 .47136
.03980

1.3 .43156
.03370

1.4 .39786
.02888

1.5 .36898
.C2502

1.6 .34"96
.C2188

1.7 .32208
.01928

1.8 .30280
.01713

1.9 .28567
.01531

2.0 .27036
.01376

2.1 .25660
.0124

2.2 .24416
°01129

2.3 .23287
.C1030

2.4 .22257
.0094

2.5 .21313
.00867

2.6 .20,.46
.00799

2.7 .19647
.00740

2,8 .18907
.00686

2.9 .18221
.00638

3.0 .17583
.00595

3.1 .16988
.00557

3.2 .16431
.00521

3.3 .15910
.00489



13

3.4 .15421
.00460

3.5 .14961
.00434

3.6 .14527
.00409

3,7 .14118
.00387

3.8 .13731 .

3.9 .13365 .0347

4.0 .13018 D0330

4. .12688 .00314

4.2 .12374 .00298

4.3 .12076 .00284

14 .11792 .00271

4.5 .11521 .00259

4.6 .1162 .00248

47 11014 .00237

4.8 .10777 .00227

4.9 .10550 00218

5.0 .10332
5.5 .0936555-5 M655,008013

6.0 .085642 006751

6.5 .07891 .005765

7.0 .07126 .0049a0

7.5 .06M46 .004346

8.0 .063800 .003825

8.5 059975 .003392

9.0 .056583 003M

9.5 .053554

,032722



10O0 .050832
.C04689

11.0 .046143
.003898

12.0 .042245
.003291

13.0 .038954
.002815

U.0 .036139
.002435

15.0 .033704
.002129

16.0 
.031575

.001875
17.0 .029700

.001665
18.0 .028035

.001488
19.0 .026547

.001339
20.0 .025208


